
Motion Memory: Leveraging Past Experiences to
Accelerate Future Motion Planning

Dibyendu Das, Yuanjie Lu, Erion Plaku, and Xuesu Xiao

Abstract— When facing a new motion-planning problem,
most motion planners solve it from scratch, e.g., via sampling
and exploration or starting optimization from a straight-line
path. However, most motion planners have to experience a va-
riety of planning problems throughout their lifetimes, which are
yet to be leveraged for future planning. In this paper, we present
a simple but efficient method called Motion Memory, which
allows different motion planners to accelerate future planning
using past experiences. Treating existing motion planners as
either a closed or open box, we present a variety of ways that
Motion Memory can contribute to reduce the planning time
when facing a new planning problem. We provide extensive
experiment results with three different motion planners on three
classes of planning problems with over 30,000 problem instances
and show that planning speed can be significantly reduced by
up to 89% with the proposed Motion Memory technique and
with increasing past planning experiences.

I. INTRODUCTION

Motion planning refers to the computational process of
determining a sequence of control inputs and actions to move
a robot from a given start state to a desired goal location
while avoiding obstacles and observing system and environ-
ment constraints. Motion planners are essential components
for almost all robotic applications [1], such as autonomous
navigation [2], [3] and manipulation [4], [5]. Therefore,
quick, efficient, and optimal collision-free motion planning
is of paramount value to the entire robotics community.

Decades of research into motion planning have made
significant progress and are able to find motion-planning
solutions for different robot platforms, e.g., using Probabilis-
tic Roadmaps (PRM) [6], Expansive Spaces algorithm [7],
and Rapidly-Exploring Random Trees (RRT) [8], [9] to
move mobile robots or manipulator arms. Nevertheless, these
planners still face challenges in complex real-world settings
when real-time planning is required to assure fast and reliable
motion execution. Conventional motion planners need to plan
from scratch every time they encounter a new environment.
This situation remains true even when robots repeatedly
face similar environments, where prior experiences could be
beneficial. Such repetitive planning introduces unnecessary
planning time and therefore limits the robot performance in
real-world environments where fast planning time can benefit
the downstream tasks, such as quickly moving through highly
constrained obstacle spaces.

On the other hand, advances in machine learning have
demonstrated that robots are capable of learning emergent
behaviors in a data-driven manner without depending on

All authors are with the Department of Computer Science, George Mason
University {ddas6, ylu22, plaku, xiao}@gmu.edu

Fig. 1: Traditional motion planners require significant
amount of effort to plan from scratch (left), such as large
amount of samples or iterations (illustrated in green); Motion
Memory utilizes past planning experiences to accelerate
future planning when facing new planing problems (right).

heavily engineered attributes and heuristics. One particular
benefit of learning methods is the potential to continually
improve with increasing real deployment experiences [10], a
capability that the classical motion planners lack.

Considering the limitations of classical motion planners
and the potential of learning from experiences, we present
Motion Memory, a new paradigm based on past planning ex-
periences to guide traditional motion-planning methods when
facing new planning problems in order to reduce computa-
tional overhead and therefore improve planning efficiency,
as robots gather more and more deployment experiences
in the real world. Leveraging machine learning, Motion
Memory includes an experience augmentation technique and
a representation learning method that enable robots to reflect
on prior planning experiences for efficient future planning as
shown in Fig. 1. To be specific, the experience augmentation
strategy automatically generates new planning problems, for
which past motion plans are (or are not) the solutions, and
thus provides Motion Memory with an extensive corpus
of training data to generalize to future planning problems.
Motion Memory also utilizes representation learning to en-
able autonomous robots to learn from augmented previous
planning experiences so that motion planners can identify,
store, memorize, and retrieve past planning experiences to
facilitate motion planning in unseen future environments.
We present different ways to integrate Motion Memory with
three existing motion planners in three different categories
of environments both in a closed and open box manner
to showcase the wide applicability and generalizability of
the technique. Our experiments demonstrate that Motion
Memory significantly reduces the motion-planning time in
future unseen environments by up to 89% with increasing
deployment experiences.

II. RELATED WORK

We review related work in classical motion planning and
motion planning with machine learning.

A. Classical Motion Planning

Among classical motion planners, sampling-based ap-
proaches have shown to be effective in solving challenging
problems in complex, unstructured environments [11], [12].
To account for dynamics [13]–[16], sampling-based motion
planners often expand a motion tree whose branches corre-
spond to collision-free and dynamically-feasible trajectories.
RRT [17], [18] and its variants [19]–[21] rely on nearest
neighbors to expand the motion tree toward random samples.
EST [22] relies on probability distributions to push the
tree toward less-explored areas. KPIECE [23] leverages a
grid decomposition and interior-exterior cells. GUST [24]
introduces a discrete layer based on a roadmap abstraction
and relies on discrete search to expand the motion tree along
shortest paths in the roadmap. The work in [25] further
improves the motion-tree expansion to more aggressively
follow the roadmap paths, while also increasing the clearance
from the obstacles. When presented with a new planning
problem, these approaches, however, have to plan from
scratch as they do not learn from prior experiences. This is
precisely what our Motion Memory framework addresses,
enabling motion planners to leverage prior solutions to
similar planning problems.

B. Learning Assisted Motion Planning

Throughout the years, the learning and planning com-
munities have investigated a variety of strategies for im-
plementing the concept of machine learning for efficient
motion planning [26]. One intuitive approach is to apply
machine learning to generate high-quality valid samples in
critical regions more efficiently. Some methods produce valid
samples in relevant areas by learning the representation of
the configuration space [27]–[30], whereas other methods
train models to bias sampling over the critical regions of
predicted trajectories [31]–[33]. Another practical strategy is
to minimize the number of collisions [34]–[36] by learning
Gaussian mixture models [37], kernel perceptron [38], and
graph neural network [39] to replace the conventional colli-
sion checker or using a learned model to determine the order
of testing the nodes to identify valid paths [40]–[42].

Instead of learning a specific planning operation, other
learning-based pipelines learn from prior experience to solve
motion planning problems in an end-to-end manner. One
strategy is to use similarity function to determine the relevant
information and retrieve it from a database in the form of
paths [43]–[45] or sampling distributions [46], [47]. Another
approach is to train a deep neural network for efficient
motion planning by using a database of past solved problems.
These methods take as input point-cloud representations of a
workspace and learn to encode this point-cloud into a latent
space [48]–[51]. Chamzas et al. [52] and Lien et al. [53]
construct a similarity function only over the workspace to ex-
tract suitable local representations of planning problems [54].

Although these planners improve future motion planning
with experiences, these planners are usually designed as one
standalone planner and do not guarantee safety assurance,
provable optimality, and good explainability.

Informed by the aforementioned works, this paper pro-
poses to hallucinate planning problems by experience aug-
mentation, construct a memory of past planning experiences
by classifying environments as similar or dissimilar using
representation learning, and retrieve relevant planning expe-
rience to assist planners in future planning. Compared to
all these specific techniques developed for a specific motion
planner in an ad hoc manner, our Motion Memory is designed
to be a universal technique that is applicable to any motion
planner and allows them to improve planning efficiency with
increasing planning experiences in a principled manner.

III. MOTION MEMORY

The key inspiration behind Motion Memory is that most
motion planners will encounter many different planning
problems and produce different planning solutions through-
out their lifetimes. Motion Memory aims at reflecting on
past planning experiences by generating a set of plan-
ning problems that will make the past planning solutions
feasible/non-feasible. Then, utilizing representation learning,
Motion Memory learns a latent space which contains efficient
but also expressive information regarding the feasibility or
optimality of the existing problem solutions with respect to
any new planning problems in the future.

A. Problem Formulation

We formulate our motion planning problem in the state
space (S-space) [55], which represents the universe of all
possible robot states. For the scope of this paper, we use
a 2D ground mobile robot as an example, but the general
paradigm of Motion Memory has the potential to scale up to
high-dimensional workspaces. A particular environment’s S-
space can be decomposed as S = Sfree ∪Sobst, where Sfree ∈
Sfree is the set of reachable states and Sobst ∈ Sobst is the
unreachable set due to obstacles, nonholonomic constraints,
velocity bounds, etc. The robot state s ∈ S is defined as in
collision with obstacles when s ∈ Sobst and collision free
otherwise (s ∈ Sfree). We denote the robot action to be u ∈
U, e.g., commanded linear and angular velocity (v, ω), and
define a motion plan P ∈ P as a sequence of such actions
and resulted states P = {ui, si | 1 ≤ i ≤ t}. P is the space
of all motion plans. Notice that some motion planners may
produce the resulted states only, i.e., P = {si | 1 ≤ i ≤
t} and leave the action generation to a low-level controller.
With the aforementioned notation, any motion planner can
be defined as a function f(·) that can be used to produce
motion plans,

P = f(S | ss, sg),

s.t. S = Sfree ∪ Sobst, ss, sg, si ∈ Sfree,∀si ∈ P,
(1)

that result in the robot moving from the robot’s start state
ss to a specified goal state sg without intersecting Sobst,
while observing robot motion constraints and optimizing a

Fig. 2: Motion Memory: Using Past Planning Experiences, Environment Generation, and Representation Learning to
Accelerate Future Planning.

particular cost function (e.g. distance, clearance, energy, and
combinations thereof).

A motion planner f(·) that has been used to solve different
motion planning problems in the past will have available a
dataset D = {di}Ni=1 = {Si, Pi}Ni=1, where N is the amount
of currently available S-space (planning problem) and motion
plan (planning solution) pairs. Here, we assume that the start
and goal states are a constant distance away from each other
and remain the same throughout all planning problems by
aligning them through rotation and translation of the S-space.
For example, ss can be always expressed as the origin of the
S-space, and sg as (50, 50). The goal of Motion Memory is
to utilize the existing D from past planning experiences to
accelerate future planning as shown in Fig. 2.

B. Augmenting Past Experiences with Hallucination

Although D may contain a variety of planning problem
and solution pairs which have the potential to cover a
new planning problem faced in the future, the chance of
encountering exactly the same problem is still very low,
considering the changing real world, sensory noise, and per-
ceptual imperfectness. Therefore, Motion Memory bootstraps
on the existing dataset D and augments it with hallucinated
planning problems.

In contrast to the motion planning problem of finding the
optimal motion plan P given a S-space S in Eqn. (1), the
hallucination problem is defined as its inverse problem [56]–
[58], i.e., given a motion plan P , what are the S-spaces S
that assure this motion plan is optimal:

{Si}∞i=1 = f†(P | ss, sg),

s.t. S = Sfree ∪ Sobst, ss, sg, si ∈ Sfree,∀si ∈ P.
(2)

Notice that f†(·) is not strictly the inverse function of f(·),
because f(·) is non-injective, i.e., different S-spaces can map
to the same optimal plan. Therefore, instead of one S-space
S, we need to find the set of all S-spaces {Si}∞i=1, where
the motion plan P is optimal. In most cases, such a set is
an infinity set, except for finitely discretized S.

Compared to the forward motion planning problem, which
needs to run in real time onboard computation-limited robot
platforms, the inverse hallucination problem in Eqn. (2) is
much easier to solve. Researchers have proposed different
ways to approximate the infinity set {Si}∞i=1 using represen-
tative obstacle states, e.g., the maximal [56], a minimal [57],
or a learned distribution of [58] obstacle set in the S-
space. With these hallucination techniques, each member
of the original pairwise motion planning problem-solution
dataset can be augmented from di = {Si, Pi} to d∗i =
{{Sj

i }
Mi
j=1, Pi}, where Mi is the number of total generated

planning problems for solution i. Thus, the original dataset
D is augmented to

D∗ = {d∗i }Ni=0 = {{Sj
i }

Mi
j=1, Pi}Ni=0,

in which each past planning solution Pi is no longer only
paired with one original planning problem Si, but a set of
Mi planning problems {Sj

i }
Mi
j=1, for which Pi is optimal.

While P1, P2, ..., PN indicate N existing motion plans, P0

corresponds to an empty set: It is also possible to produce a
set of motion planning problems in which no existing motion
planning solutions are feasible or optimal, e.g., by adding
obstacles to intersect with at least one robot state in every
existing motion plan, which will yield d∗0 = {{Sj

0}
M0
j=1, P0},

which is also included in D∗.

C. Representation Learning

The augmented dataset D∗ contains more planning prob-
lems for each past planning solution, where the solution is
feasible or optimal. Such an augmented dataset is used to
learn an efficient latent representation space, which contains
critical information regarding the feasibility or optimality
of each existing motion plan solution with respect to any
motion planning problem. Specifically, we adopt a triplet
loss to enforce solution invariance in the learned latent space
so that all environments where solution Pi is feasible or
optimal stay close to each other in the learned embedding
space. We generate triplet training data of anchor, similar,

Fig. 3: Different Planning Problem Classes : Curves (Left),
Random (Middle), Trap (Right)

and dissimilar planning problems ⟨Sa, Ss, Sd⟩ by sampling
Sa and Ss from the same set of planning problems where
solution Pi is feasible or optimal, i.e., {Sj

i }
Mi
j=1, and sample

Sd from other problem sets and assure Pi is not feasible
or optimal for Sd. The planning problem (S-space) encoder
eθ(·) is then trained to minimize a triplet loss,

L(⟨Sa, Ss, Sd⟩) =
max(||eθ(Sa)− eθ(S

s)|| − ||eθ(Sa)− eθ(S
d)||+ δ, 0),

with θ as the learnable parameters. The representation space
will contain data points from N different latent clusters
corresponding to the N existing motion plans {Pi}Ni=0,
including a cluster for S-spaces where none of the N plans
are feasible or optimal. The cluster centroids are computed
as

ci =
1

Mi

Mi∑
j=1

eθ(S
j
i).

D. Accelerating Future Planning

Using representation learning, the planning problem en-
coder is able to project any new motion planning problem
SN+1 into the latent space, i.e., lN+1 = eθ(SN+1). The
existing motion plan associated with the closest cluster
centroid Pi∗ is likely the closest to the actual motion planning
solution of the problem Sn+1:

i∗ = argmin
i

||eθ(Sn+1)− ci||.

For existing motion planners, a motion plan Pi∗ potentially
very close to the actual solution can be used to accelerate
planning in different ways. For example, for sampling-
based motion planners, the states in Pi∗ can be used to
bias sampling. For optimization-based approaches, both the
actions and states can be used as an initial guess. For motion
planners treated as a closed-box or an open-box, Pi∗ can
be collision checked and be used as the final solution if
no collisions are detected, or utilize the closed-box planner
to only fix the plan segments which are in collision. In
cases where P0 is the closest in the representation space,
the motion planner can start planning from scratch.

IV. EXPERIMENTS

We present extensive experimental results by integrating
our Motion Memory technique with three different motion
planners in both a closed-box and an open-box manner to
solve three different classes of motion-planning problems.
We present detailed results on the three planners’ perfor-
mances with or without Motion Memory for each problem

class and for all three classes combined into one. Further-
more, we present evidence demonstrating Motion Memory
allows motion planners’ planning efficiency to improve with
increasing past planning experiences. Finally, we conduct an
ablation study to show that the improved planning efficiency
is not only due to more past planning experiences, rather the
Motion Memory technique itself is an indispensable part.

A. Experimental Setup

Considering Motion Memory is designed to be a uni-
versal paradigm that is agnostic to any underlying planner,
we integrate Motion Memory with three different motion
planners, in both a closed-box and an open-box manner
to show its general applicability (denoted as “C” and “O”
in all experiment results). In the closed-box integration,
we do not assume any access to or knowledge about the
underlying planner, and only interface Motion Memory with
it using the Motion Memory output as a potential solution
after taking a new planning problem as input. The open-
box integration assumes access to and knowledge about the
underlying planner and depends on which components can
be benefited from the Motion Memory output, e.g., sampling
distribution or initial optimization guess. We describe the
three underlying planners with their closed-box and open-
box Motion Memory integration as follows.

1) Baseline Planners: We experiment with different
sampling-based motion planners. We first use RRT [17], [18],
one of the most popular methods. RRT uses random sampling
and nearest neighbors to guide the motion-tree expansion.
We also use GUST [24], which was specifically designed
for motion-planning problems for vehicles with dynamics.
GUST introduces a discrete layer obtained by building a
roadmap to guide the motion-tree expansion. The roadmap is
then used to induce a partition of the motion-tree into groups
based on their nearest roadmap node. During the motion-tree
expansion, priority is given to those groups associated with
short paths to the goal. Our third planner, which we refer to
as Follow [25], further improves GUST by more aggressively
following the roadmap paths, and dynamically adjusting the
weights based on the progress made during the motion-tree
expansion.

a) Closed-box Versions of the Motion Planners: We
first use these planners as black boxes in conjunction with the
motion-memory framework. Specifically, let ζ1, . . . , ζk be
the top k-predictions obtained by the motion-memory frame-
work for a new motion-planning problem. Each of these
predictions corresponds to a dynamically-feasible trajectory
(retrieved from the database). The black-box version, referred
to as MPClosedBox, first checks these trajectories ζ1, . . . , ζk
in order for collisions. If some ζi is not in collision, then
MPClosedBox returns ζi as the solution. Otherwise, MPClosedBox
runs MP and returns the solution (if any) found by MP.

b) Open-box Versions of the Motion Planners: We
can better leverage the predictions made by the motion-
memory framework by looking inside the motion planners
to better leverage the predictions. We refer to these versions
as MPOpenBox. MPOpenBox, as the closed-box version, starts by

Fig. 4: Different Motion Memory configurations improve three planners in three classes of motion planning problems.

checking if any of the predicted trajectories ζ1, . . . , ζk is not
in collision. If all of them are in collision, then MPOpenBox
runs a modified version of MP, as described below.

RRTOpenBox is obtained by changing the sampling distribu-
tion from which the target is drawn. In the original RRT, the
target is sampled with probability bgoal (usually bgoal = 0.1)
from an area near the goal, and with probability 1 − bgoal
from the entire state space. To leverage the predictions,
we bias the sampling to be along the predicted trajectories
ζ1, . . . , ζk. In particular, let b1, . . . , bk, bgoal, bother such that
b1 + . . . + bk + bgoal + bother = 1. Generally, b1 > . . . >
bk > bgoal > bother. We sample the target with probability bi
along ζi, with probability bgoal from near the goal, and with
probability bother from the entire state space. To generate a
target along ζi, we first select an intermediate state in ζi and
then sample around it. In this way, RRTOpenBox biases the
exploration toward the predicted trajectories ζ1, . . . , ζk.

GUSTOpenBox differs from GUST only in the roadmap
construction. Specifically, while GUST generates a roadmap
node by sampling from the entire space, GUSTOpenBox biases
the sampling along ζ1, . . . , ζk. Specifically, to generate a
roadmap node, GUSTOpenBox selects ζi with probability bi,
selects a state s uniformly at random from ζi, and generates a
roadmap node by sampling near s. This results in a roadmap
that captures the connectivity along the predicted trajectories
ζ1, . . . , ζk. Note that the roadmap is collision free, even if
parts of ζ1, . . . , ζk are in collision (since samples that result
in collision are discarded during the roadmap construction).
This biased roadmap construction allows for a more efficient
expansion of the motion tree along the predicted trajectories.

FollowOpenBox differs from Follow only in the roadmap

construction. In fact, FollowOpenBox uses the same procedure
as GUSTOpenBox for constructing the roadmap. FollowOpenBox
then seeks to closely follow the shortest roadmap path from
the start to the goal by aggressively expanding the motion
tree to follow the nodes in the shortest path in succession.

2) Planning Problem Classes: Fig. 3 shows the three
different classes of planning problems used in our experi-
ments, referred to as “Curves,” “Random,” and “Trap.” These
problem classes are parametrized, and the obstacles are
procedurally generated. Placement (location and orientation)
and size of the obstacles are drawn from a probability
distribution so that numerous instances can be generated for
each problem class. An instance corresponds to a specific
placement of the obstacles, as shown in Fig. 3. For example,
for the “Curves” problem class we can vary the number of
curves, number of segments per curve, separation among
segments, and so on. For the “Random” problem class, we
can vary the density of the obstacles as well as their shape
and placement. For the “Trap” problem class we can perturb
the placement of the major obstacles and also of the random
obstacles spread throughout the environment.

3) Motion Memory Implementation: For each of the three
motion planning problem classes, we assume our Motion
Memory has access to 100 planning problems and their
corresponding motion planning solutions as its past planning
experiences, i.e., D = {di}100i=1 = {Si, Pi}100i=1. We augment
each data point in D with 999 more planning problems
and generate an augmented dataset D∗ = {d∗i }100i=1 =
{{Sj

i }1000j=1 , Pi}100i=1, a dataset of 100,000 problems per class
with 100 solutions, by slightly rearranging obstacles close to
the motion plan and randomly shuffling obstacles in other

places. For simplicity, we omit the set of problems where
no existing motion plan is a solution, i.e., d∗0. To train the
planning problem encoder eθ(·), we use a Convolutional
Neural Network which takes motion planning problems as
input and outputs a 30-dimensional latent space. For testing,
we generate another 10,000 unseen planning problems per
class for the motion planners to solve.

We present experiments comparing closed-box and open-
box integrations with both top-one and top-five predictions
for new problems. While top-five predictions provide more
information, they also incur additional computational costs
due to the need to process multiple predicted solutions.

B. Improvement for Different Planners and Problems

In Fig. 4, we show individual planning performance of the
three underlying planners (GUST, Follow, and RRT in row 1,
2, and 3 respectively) in the three classes of motion planning
problems (Curves, Random, and Trap in column 1, 2, and
3 respectively). The fourth column is the results of a large
Motion Memory which does not distinguish among different
motion planning problem classes, with 300,000 training and
30,000 testing data points. In each figure, we show the
average planning time of default baseline planner without
Motion Memory (Planner Baseline), the baseline plan-
ner assisted by Motion Memory in a closed-box manner
with top-one or top-five prediction(s) (MM Planner C 1
and MM Planner C 5), and also assisted in an open-box
manner (MM Planner O 1 and MM Planner O 5).

The results show that Motion Memory can significantly
reduce planning time compared to all three default baseline
planners, with the only exception of using Motion Memory in
a closed-box manner with Follow in the Trap environment. In
each of the 12 sub-figures in Fig. 4, we can observe increas-
ing performance from left to right. Using Motion Memory
in a open-box manner achieves similar or more improvement
compared to using it in a closed-box manner. In most cases,
using the top-five Motion Memory predictions outperforms
using the top-one prediction, despite the potentially more
computation to process four extra predictions. Comparing
the first three columns, Motion Memory can achieve the
most significant improvement for Curves environments with
GUST and Follow, while RRT enjoys the most Motion
Memory benefits in the Trap environments. In the last
column where Motion Memory does not distinguish among
the three classes of planning problems, it also outperforms all
three baseline planners. Comparing the three rows, Motion
Memory is the most helpful for GUST, while the difference
made by Motion Memory to RRT is relatively smaller.

C. Continual Improvement with Increasing Experience

We also study the performance improvement of Motion
Memory with respect to increasing past planning experi-
ences. In Fig. 5, we show how the runtime of the GUST
planner to solve planning problems in Curves environments
changes when having access to more available motion plans.
For each bar in Fig. 5, we go through the entire Motion Mem-
ory pipeline, including environment generation and represen-

Fig. 5: Improvement with In-
creasing Experiences.

Fig. 6: Ablation Study: Ran-
dom Path Selection.

tation learning, with a limited number of available motion
plans (20, 40, 60, 80, or 100). By integrating the Motion
Memory model produced by the corresponding amount of
past experiences with GUST, we test the planner performance
on the 10,000 unseen test problems. With only 20 or 40
available past motion plans, Motion Memory underperforms
the baseline GUST, because a limited set of available motion
plans is not able to sufficiently cover the variety of new
planning problems. With increasing experiences, we see a
significant reduction in runtime and improvement in planning
efficiency. Such experiment results confirm our hypothesis
that a motion planner can continually improve when having
access to increasing amount of past planning experiences
with the assistance of Motion Memory.

D. Ablation Study

Finally, to demonstrate the necessity of the Motion Mem-
ory technique, in addition to the access to a large amount
of past planning experiences, we conduct an ablation study,
in which we do not use the environment generation and
representation learning in Motion Memory to decide which
past plan may be most helpful for a future planning problem,
but randomly pick a past plan to assist the motion planner.
Fig. 6 shows that randomly picking one or five past plans to
assist GUST in Curves environments in a open-box manner
will increase the planning time. Such results indicate it
is necessary to use Motion Memory to decide which past
planning experience is useful to accelerate future planning.

V. DISCUSSION

We present Motion Memory, a universal technique which
is agnostic to different underlying motion planners but
helps them to accelerate their future planning runtime with
past planning experiences. By augmenting past experiences
and using representation learning, Motion Memory avoids
unnecessary and repetitive replanning from scratch when
facing similar future planning problems. We demonstrate
the efficacy of Motion Memory by integrating it with dif-
ferent planners in a closed-box and open-box fashion, and
solving different classes of motion-planning problems more
efficiently. One possible direction for future research is to
extend Motion Memory for manipulation planning, where the
robot interacts with the objects in the environment. Another
direction is to consider a heterogeneous team of robots and
how Motion Memory can facilitate planning for different
types of robot, possibly adpating plans from one robot type
to another.

REFERENCES

[1] J. Canny, The complexity of robot motion planning. MIT press, 1988.
[2] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How,

“Real-time motion planning with applications to autonomous urban
driving,” IEEE Transactions on control systems technology, vol. 17,
no. 5, pp. 1105–1118, 2009.

[3] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

[4] S. Murray, W. Floyd-Jones, Y. Qi, D. J. Sorin, and G. D. Konidaris,
“Robot motion planning on a chip.” in Robotics: Science and Systems,
vol. 6, 2016.

[5] R. Volpe, “Rover functional autonomy development for the mars mo-
bile science laboratory,” in Proceedings of the 2003 IEEE Aerospace
Conference, vol. 2, 2003, pp. 643–652.

[6] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[7] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,” in Proceedings of international conference on
robotics and automation, vol. 3. IEEE, 1997, pp. 2719–2726.

[8] S. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Research Report 9811, 1998.

[9] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research,
vol. 30, no. 7, pp. 846–894, 2011.

[10] X. Xiao, B. Liu, G. Warnell, and P. Stone, “Motion planning and
control for mobile robot navigation using machine learning: a survey,”
Autonomous Robots, vol. 46, no. 5, pp. 569–597, 2022.

[11] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, 2005.

[12] S. M. LaValle, Planning Algorithms. Cambridge, MA: Cambridge
University Press, 2006.

[13] X. Xiao, J. Biswas, and P. Stone, “Learning inverse kinodynamics for
accurate high-speed off-road navigation on unstructured terrain,” IEEE
Robotics and Automation Letters, vol. 6, no. 3, pp. 6054–6060, 2021.

[14] H. Karnan, K. S. Sikand, P. Atreya, S. Rabiee, X. Xiao, G. Warnell,
P. Stone, and J. Biswas, “Vi-ikd: High-speed accurate off-road nav-
igation using learned visual-inertial inverse kinodynamics,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2022, pp. 3294–3301.

[15] P. Atreya, H. Karnan, K. S. Sikand, X. Xiao, S. Rabiee, and J. Biswas,
“High-speed accurate robot control using learned forward kinody-
namics and non-linear least squares optimization,” in 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2022, pp. 11 789–11 795.

[16] A. Datar, C. Pan, and X. Xiao, “Learning to model and plan for
wheeled mobility on vertically challenging terrain,” arXiv preprint
arXiv:2306.11611, 2023.

[17] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, 2001.

[18] S. M. LaValle, “Motion planning: The essentials,” IEEE Robotics &
Automation Magazine, vol. 18, no. 1, pp. 79–89, 2011.

[19] W. Xinyu, L. Xiaojuan, G. Yong, S. Jiadong, and W. Rui, “Bidi-
rectional potential guided RRT* for motion planning,” IEEE Access,
vol. 7, pp. 95 046–95 057, 2019.

[20] A. Shkolnik, M. Walter, and R. Tedrake, “Reachability-guided sam-
pling for planning under differential constraints,” in IEEE Interna-
tional Conference on Robotics and Automation, 2009, pp. 2859–2865.

[21] D. Devaurs, T. Simeon, and J. Cortés, “Enhancing the transition-
based RRT to deal with complex cost spaces,” in IEEE International
Conference on Robotics and Automation, 2013, pp. 4120–4125.

[22] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,” in IEEE International Conference on Robotics
and Automation, vol. 3, 1997, pp. 2719–2726.

[23] I. A. Şucan and L. E. Kavraki, “A sampling-based tree planner for
systems with complex dynamics,” IEEE Transactions on Robotics,
vol. 28, no. 1, pp. 116–131, 2012.

[24] E. Plaku, “Region-guided and sampling-based tree search for motion
planning with dynamics,” IEEE Transactions on Robotics, vol. 31, pp.
723–735, 2015.

[25] E. Plaku, E. Plaku, and P. Simari, “Clearance-driven motion planning
for mobile robots with differential constraints,” Robotica, vol. 36, pp.
971–993, 2018.

[26] T. McMahon, A. Sivaramakrishnan, E. Granados, K. E. Bekris et al.,
“A survey on the integration of machine learning with sampling-based
motion planning,” Foundations and Trends® in Robotics, vol. 9, no. 4,
pp. 266–327, 2022.

[27] G. S. Aoude, B. D. Luders, J. M. Joseph, N. Roy, and J. P. How,
“Probabilistically safe motion planning to avoid dynamic obstacles
with uncertain motion patterns,” Autonomous Robots, vol. 35, pp. 51–
76, 2013.

[28] B. Burns and O. Brock, “Sampling-based motion planning using
predictive models,” in Proceedings of the 2005 IEEE international
conference on robotics and automation. IEEE, 2005, pp. 3120–3125.

[29] Z. Kingston, M. Moll, and L. E. Kavraki, “Exploring implicit spaces
for constrained sampling-based planning,” The International Journal
of Robotics Research, vol. 38, no. 10-11, pp. 1151–1178, 2019.

[30] G. Sutanto, I. R. Fernández, P. Englert, R. K. Ramachandran, and
G. Sukhatme, “Learning equality constraints for motion planning on
manifolds,” in Conference on Robot Learning. PMLR, 2021, pp.
2292–2305.

[31] I. Baldwin and P. Newman, “Non-parametric learning for natural plan
generation,” in 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2010, pp. 4311–4317.

[32] M. Zucker, J. Kuffner, and J. A. Bagnell, “Adaptive workspace biasing
for sampling-based planners,” in 2008 IEEE International Conference
on Robotics and Automation. IEEE, 2008, pp. 3757–3762.

[33] B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions
for robot motion planning,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 7087–7094.

[34] K. Hauser, “Lazy collision checking in asymptotically-optimal motion
planning,” in 2015 IEEE international conference on robotics and
automation (ICRA). IEEE, 2015, pp. 2951–2957.

[35] A. Mandalika, S. Choudhury, O. Salzman, and S. Srinivasa, “Gen-
eralized lazy search for robot motion planning: Interleaving search
and edge evaluation via event-based toggles,” in Proceedings of the
International Conference on Automated Planning and Scheduling,
vol. 29, 2019, pp. 745–753.

[36] J. Bialkowski, M. Otte, S. Karaman, and E. Frazzoli, “Efficient
collision checking in sampling-based motion planning via safety
certificates,” The International Journal of Robotics Research, vol. 35,
no. 7, pp. 767–796, 2016.

[37] J. Huh and D. D. Lee, “Learning high-dimensional mixture models
for fast collision detection in rapidly-exploring random trees,” in 2016
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2016, pp. 63–69.

[38] N. Das and M. Yip, “Learning-based proxy collision detection for
robot motion planning applications,” IEEE Transactions on Robotics,
vol. 36, no. 4, pp. 1096–1114, 2020.

[39] C. Yu and S. Gao, “Reducing collision checking for sampling-based
motion planning using graph neural networks,” Advances in Neural
Information Processing Systems, vol. 34, pp. 4274–4289, 2021.

[40] J. Pan, S. Chitta, and D. Manocha, “Faster sample-based motion
planning using instance-based learning,” in Algorithmic Foundations
of Robotics X: Proceedings of the Tenth Workshop on the Algorithmic
Foundations of Robotics. Springer, 2013, pp. 381–396.

[41] M. Bhardwaj, S. Choudhury, B. Boots, and S. Srinivasa, “Leveraging
experience in lazy search,” Autonomous Robots, vol. 45, pp. 979–996,
2021.

[42] B. Hou, S. Choudhury, G. Lee, A. Mandalika, and S. S. Srinivasa,
“Posterior sampling for anytime motion planning on graphs with
expensive-to-evaluate edges,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2020, pp. 4266–4272.

[43] D. Berenson, P. Abbeel, and K. Goldberg, “A robot path planning
framework that learns from experience,” in 2012 IEEE International
Conference on Robotics and Automation. IEEE, 2012, pp. 3671–3678.

[44] È. Pairet, C. Chamzas, Y. Petillot, and L. E. Kavraki, “Path plan-
ning for manipulation using experience-driven random trees,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 3295–3302, 2021.

[45] D. Coleman, I. A. Şucan, M. Moll, K. Okada, and N. Correll,
“Experience-based planning with sparse roadmap spanners,” in 2015
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2015, pp. 900–905.

[46] C. Chamzas, A. Shrivastava, and L. E. Kavraki, “Using local experi-

ences for global motion planning,” in 2019 International Conference
on Robotics and Automation (ICRA). IEEE, 2019, pp. 8606–8612.

[47] S. Finney, L. P. Kaelbling, and T. Lozano-Pérez, “Predicting partial
paths from planning problem parameters.” in Robotics: Science and
Systems. Citeseer, 2007.

[48] A. H. Qureshi, A. Simeonov, M. J. Bency, and M. C. Yip, “Motion
planning networks,” in 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2019, pp. 2118–2124.

[49] J. J. Johnson, L. Li, F. Liu, A. H. Qureshi, and M. C. Yip, “Dy-
namically constrained motion planning networks for non-holonomic
robots,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2020, pp. 6937–6943.

[50] R. Strudel, R. G. Pinel, J. Carpentier, J.-P. Laumond, I. Laptev,
and C. Schmid, “Learning obstacle representations for neural motion
planning,” in Conference on Robot Learning. PMLR, 2021, pp. 355–
364.

[51] A. H. Qureshi, J. Dong, A. Choe, and M. C. Yip, “Neural manipulation
planning on constraint manifolds,” IEEE Robotics and Automation
Letters, vol. 5, no. 4, pp. 6089–6096, 2020.

[52] C. Chamzas, Z. Kingston, C. Quintero-Peña, A. Shrivastava, and L. E.
Kavraki, “Learning sampling distributions using local 3d workspace
decompositions for motion planning in high dimensions,” in 2021
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2021, pp. 1283–1289.

[53] J.-M. Lien and Y. Lu, “Planning motion in environments with similar
obstacles.” in Robotics: Science and systems, 2009.

[54] C. Chamzas, A. Cullen, A. Shrivastava, and L. E. Kavraki, “Learning
to retrieve relevant experiences for motion planning,” in 2022 Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2022,
pp. 7233–7240.

[55] J.-C. Latombe, Robot motion planning. Springer Science & Business
Media, 2012, vol. 124.

[56] X. Xiao, B. Liu, G. Warnell, and P. Stone, “Toward agile maneuvers
in highly constrained spaces: Learning from hallucination,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 1503–1510, 2021.

[57] X. Xiao, B. Liu, and P. Stone, “Agile robot navigation through hallu-
cinated learning and sober deployment,” in 2021 IEEE international
conference on robotics and automation (ICRA). IEEE, 2021, pp.
7316–7322.

[58] Z. Wang, X. Xiao, A. J. Nettekoven, K. Umasankar, A. Singh,
S. Bommakanti, U. Topcu, and P. Stone, “From agile ground to aerial
navigation: Learning from learned hallucination,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021, pp. 148–153.

	INTRODUCTION
	RELATED WORK
	Classical Motion Planning
	Learning Assisted Motion Planning

	Motion Memory
	Problem Formulation
	Augmenting Past Experiences with Hallucination
	Representation Learning
	Accelerating Future Planning

	EXPERIMENTS
	Experimental Setup
	Baseline Planners
	Planning Problem Classes
	Motion Memory Implementation

	Improvement for Different Planners and Problems
	Continual Improvement with Increasing Experience
	Ablation Study

	DISCUSSION
	References

